If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+8y=42
We move all terms to the left:
4y^2+8y-(42)=0
a = 4; b = 8; c = -42;
Δ = b2-4ac
Δ = 82-4·4·(-42)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{46}}{2*4}=\frac{-8-4\sqrt{46}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{46}}{2*4}=\frac{-8+4\sqrt{46}}{8} $
| a=-3.9(2000)+945 | | x^2+x=29.1 | | 7(10-3w)=5(15*4w) | | 7k+5=-2 | | 3y=27-15y | | 12n=24-5n | | 2y-8=13 | | a=-3.8(2010)+865 | | a=-3.8(2000)+865 | | 6=-210-7y | | 0=-210-7y | | 2(u+3)=3(1–u)+23u= | | 5(x-7)+42=3x+7+2x | | 6x=-210-7(1) | | 5x+3=8x-4=180 | | 5n-12=2n | | 2x-8+3x+17=180 | | n-21=-20 | | 8^(y+5)=3 | | 8^y+5=3 | | Q2x-2=4x+6 | | 2+c/3=-8 | | 65+55+z=180 | | -3•x-8+7x=12 | | 40=x(12-2x)(8-2x) | | 40^3=x(12-2x)(8-2x) | | 6x4+x2-2=0 | | -3x+7•x+5=5x+38 | | 5x-(-14-x)=-30-2x | | 2x=2(9+4x) | | 18x2-6x+1=0 | | y/y+2+2/y-2=6/y+6 |